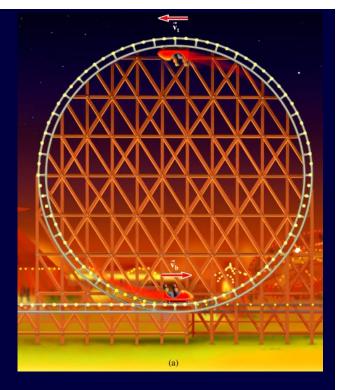
Lecture 8: Work and Energy

Today's Agenda

- Work and Energy
 - Definition of work
 - Examples
- Definition of Mechanical Energy
- Conservation of Mechanical Energy
 - Conservative forces

Clicker Question 0.1:

A roller coaster car is at the top of a loop-de-loop and does not lose contact with the track. The loop has a diameter of 20m.

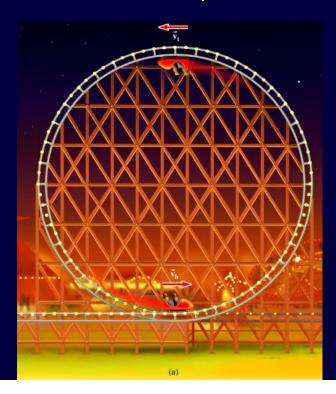

How many forces act on the car?

- (a) 1
- (b) 2
- (c) 3
- (d) 4
- (e) 5

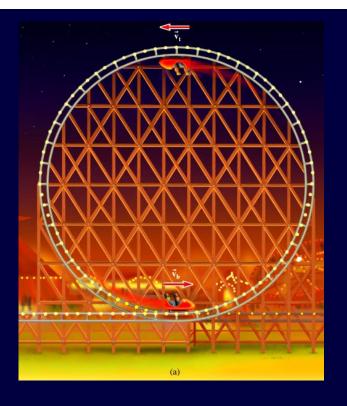
A roller coaster car is at the top of a loop-de-loop and does not lose contact with the track.

How many forces act on the car?

Clicker Question 0.2:


A roller coaster car is at the top of a loop-de-loop and does not lose contact with the track.

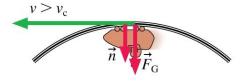
What force provides the centripetal acceleration required to


keep the car moving in a circle?

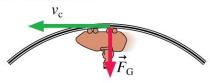
(a) Normal Force

- (b) Gravity
- (c) Both (a) and (b)

What is the minimum speed you must have at the top of the roller coaster loop to keep the wheels on the track? The loop has a diameter of 20m.

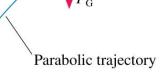


$$v = \sqrt{gR} = 9.9 \ m/s$$


Loop-the-Loop

A roller-coaster car at the top of the loop.

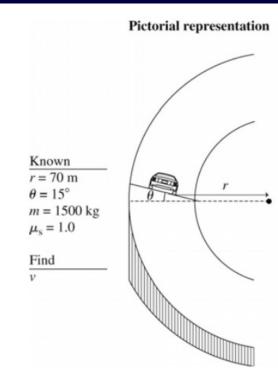
The normal force adds to gravity to make a large enough force for the car to turn the circle.



At v_c , gravity alone is enough force for the car to turn the circle. $\vec{n} = \vec{0}$ at the top point.

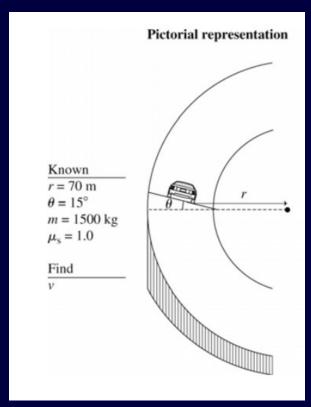
The gravitational force is too large for the car to stay in the circle!

Normal force became zero here.


Clicker Question 4:

A concrete highway curve of radius r = 70 m is banked at a angle of 15°. What is the maximum speed with which a 1500 kg rubber-tired car can take this curve without sliding? (Take the static coefficient of friction of

rubber on concrete to be 1.0.)


How many forces act on the car?

- (A) 2
- (B) 3
- (C)4
- (D) 5
- (E) 6

Example 8.40

A concrete highway curve of radius r = 70 m is banked at a a angle of 15 °. What is the maximum speed with which a 1500 kg rubber-tired car can take this curve without sliding? (Take the static coefficient of friction of rubber on concrete to be 1.0.)

Example 8.40

Y 1 ×

A concrete highway curve of radius r = 70 m is banked at a a angle of 15°. What is the maximum speed with which a 1500 kg rubber-tired car can take this curve without sliding? (Take the static coefficient of friction of rubber on concrete to be 1.0.)

(05 t -M5116

$$ZF_{\gamma} = 0$$
 $F_{S} = M$
 $F_{N} USH - F_{S} SNH - MS = 0$
 $F_{N} USH - MF_{N} SNB = MS$
 $F_{N} USH - MSNB = MS$

Example 8.40

A concrete highway curve of radius r = 70 m is banked at a angle of 15°. What is the maximum speed with which a 1500 kg rubber-tired car can take this curve without sliding? (Take the static coefficient of

friction of rubber on concrete to be 1.0.)

$$S = \frac{(S_{1} + M_{1} + M_{1} + M_{2})}{(S_{1} + M_{2} + M_{2})} = \frac{1}{1}$$

$$V = \sqrt{\frac{(S_{1} + M_{2} + M_{2})}{(S_{1} + M_{2} + M_{2})}} = \frac{1}{1}$$

$$V = \sqrt{\frac{(S_{1} + M_{2} + M_{2})}{(S_{1} + M_{2} + M_{2})}} = \frac{1}{1}$$

$$V = \sqrt{\frac{(S_{1} + M_{2} + M_{2})}{(S_{1} + M_{2} + M_{2})}} = \frac{1}{1}$$

$$M = 15$$
 $G = 15$
 $G = 70m$
 $G = 9,81 M/52$

New section: Why some things don't change

If something doesn't change we say it is conserved

Concepts like Energy and Momentum are less tangible than mass and force

They will give us a new and different perspective on motion

Work by a Constant Force

- Work is the energy transferred to a system or object that is caused by a force
- To do work you need two things
 - A Force
 - Motion
- I lift my book with force F through a distance of △s
- Work = $F \times \Delta s$ = Force \times (Displacement)
 - Equation only works with a constant force
 - Equation only works when the force is in same direction as displacement

Work =
$$N \times m$$
 = Joule = J

Clicker Question 1:

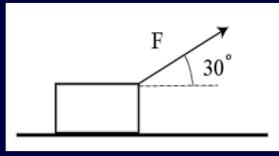
A box sits on the floor. A force F = 200 N is then applied to the right but slightly upward at an angle of 30° from the horizontal (see diagram) such that the box moves 5 meters horizontally to the right. How much work is done by the force?

A. 50 J

B. 866 J

C. 1900 J

D. 2430 J


E. 3230 J

Cos 30 = 0.866Sin 30 = 0.5

Clicker Question 1:

A box sits on the floor. A force F = 200 N is then applied to the right but slightly upward at an angle of 30° from the horizontal (see diagram) such that the box moves 5 meters horizontally to the right. How much work is done by the force?

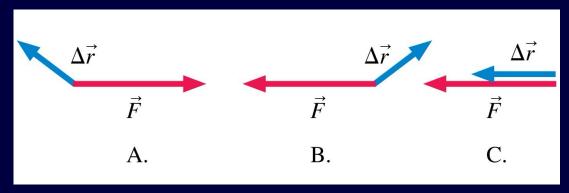
Cos 30 = 0.866Sin 30 = 0.5

Work = $F \triangle s \cos(\theta)$

F is magnitude of Force;

Δs is displacement
θ is angle between the two

Interesting things about work

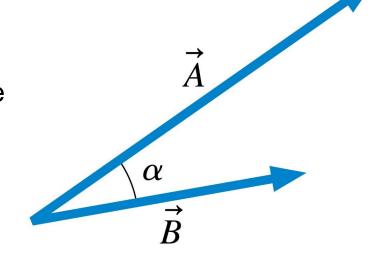

- You have to move the object to DO work!!
 - I hold up a dumbbell, but it doesn't move
 - I do no work!!
 - Definition of work!
- If force is perpendicular to motion you do no work!
- You can have positive or negative work
 - Work is a scalar (easier for us!)

Positive vs. negative work

- If component of force points in same direction as displacement, work is positive
- If component of force points in opposite direction as displacement, work is negative
- Good example: Friction (often does negative work)

Clicker Question 2:

A constant force pushes a particle through a displacement. In which of these three cases does the force do negative work?



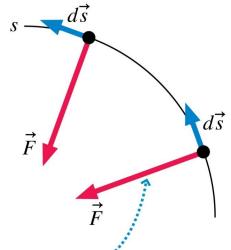
- D. Both A and B.
- E. Both A and C.

The Dot Product of Two Vectors

- The figure shows two vectors, \vec{A} and \vec{B} , with angle α between them.
- The dot product of \vec{A} and \vec{B} is defined as


$$\vec{A} \cdot \vec{B} = AB \cos \alpha$$

The dot product is also called the scalar product because the value is a scalar.


Clicker Question 3:

- A box is pulled up a rough (μ > 0) incline by a rope-pulley-weight arrangement as shown below.
 - How many forces are doing work on the box?
 - (a) 1
 - (b) 2
 - (c) 3
 - (d) 4
 - (e) 5

Zero-Work Situations

- The figure shows a particle moving in uniform circular motion.
- At every point in the motion, F_s, the component of the force parallel to the instantaneous displacement, is zero.

The force is everywhere perpendicular to the displacement, so it does no work.

- The particle's speed, and hence its kinetic energy, doesn't change, so $W = \Delta K = 0$.
- A force everywhere perpendicular to the motion does no work.

Slide 9-21

Work Total

 Work total is the work on an object by all forces acting.

$$W_{tot} = \Sigma W$$

Work total is the work done by the net force

Kinetic Energy: Motion

Apply constant force along x-axis to a point particle m.

$$W = F_x \Delta s$$

= m a_x \Delta s
= \frac{1}{2} m (v_f² - v_i²)

recall:
$$a_x \Delta s = \frac{1}{2} (v_{xf}^2 - v_{xi}^2)$$

- Work changes ½ m v²
- This is the Kinetic Energy $K = \frac{1}{2} \text{ m } v^2$

$$W = \Delta K$$
 For Point Particles

Kinetic Energy

- An object in motion has energy
- Energy of motion is called Kinetic energy
- True for any object with velocity v and mass m.

$$K = \frac{1}{2} m v^2$$

The Work-Energy Theorem

- $W_{tot} = \frac{1}{2} m v_f^2 \frac{1}{2} m v_i^2$
- Put positive work into an object, its speed increases!
- Put negative work into an object, its speed decreases!
- Be careful, we are interested in total work done!!!
 - We must look at all forces acting, not just one!

Clicker Question 4:

Two identical arrows, one with twice the speed of the other, are fired into a bale of hay. Assuming the hay exerts a constant frictional force on the arrows, the faster arrow will penetrate how much further than the slower arrow?

- (A) twice as much as the slower arrow
- (B) four times as much the slower arrow
- (C) six times as much the slower arrow
- (D) eight times as much the slower arrow

Clicker Question 4:

•
$$W_{tot} = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$$

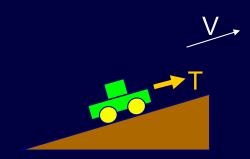
•
$$v_f = 0$$
 and $W_{tot} = -Fd$

• -Fd = -
$$\frac{1}{2}$$
m v_i^2

$$d = \frac{\frac{1}{2} m v_i^2}{F}$$

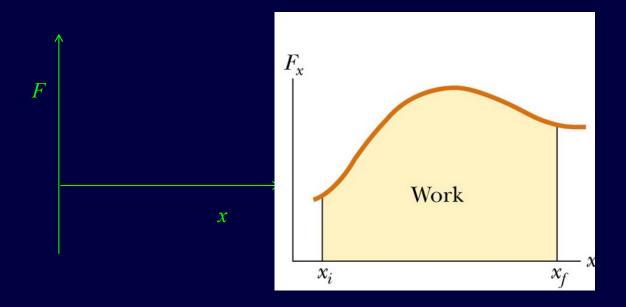
Since the faster arrow is twice as fast, the distance is $2^2 = 4$ times as long to stop it.

Clicker Question 5:

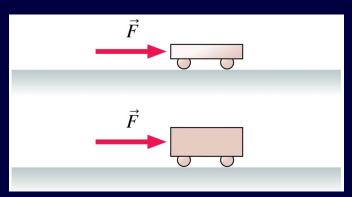

You are towing a car up a hill with constant velocity.

The total work done on the car by all forces is:

A. positive


B. negative

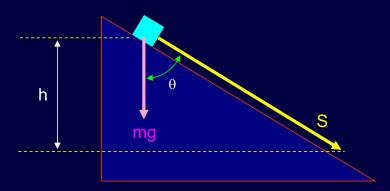
C. zero


Work by a Constant Force

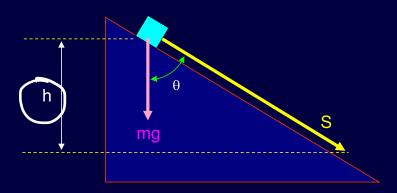
 The work done by a force acting on an object that undergoes a displacement is equal to the area under the graph of F versus x

Clicker Question 6:

A light plastic cart and a heavy steel cart are both pushed with the same force for a distance of 1.0 m, starting from rest. After the force is removed, the kinetic energy of the light plastic cart is _____ that of the heavy steel cart



- A. greater than
- в. equal to
- c. less than
- D. Can't say. It depends on how big the force is.


Clicker Question 7:

• What is the work done by gravity as the block slides down the incline?

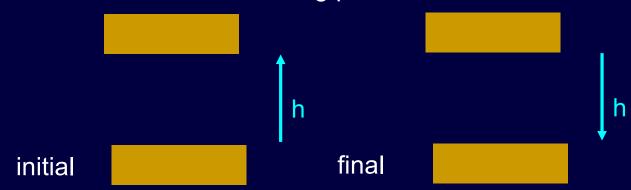
- (a) W = mgh
- (b) $W = mgh*sin(\theta)$
- (c) $W = mgh*cos(\theta)$
- (d) W = -mgh
- (e) $W = -mgh*sin(\theta)$

Clicker Question 7:

Gravity does zero work for motion in the x-direction

Clicker Question 7:

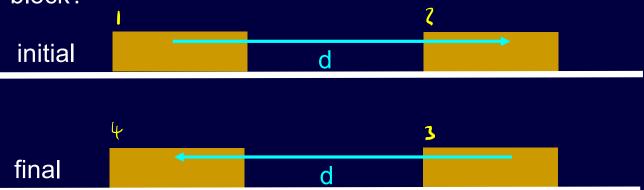
You need to raise a heavy block by pulling it with a massless rope. You can either pull the block straight up height h, or pull it up a long, frictionless plane inclined at a 15 angle until its height has increased by h. Assume you will move the block at constant speed either way.


Student comments:

Correct: "The force exerted at a 15 degree angle is about 1/4 the force exerted by pulling up, however, the distance covered on the 15 degree ramp is about 4 times the distance covered by pulling straight up.

Correct: "in a) you exert more force over a shorter displacement and in b) you exert less force (due to the angle), over a longer displacement. since work is the product of these two quantities, it is the same in both cases"

Clicker Question 8:


What total work does gravity do as my book is moved up and then back to it's starting point?

- (a) W = mgh
- (b) W = 0
- (c) W = -mgh

Clicker Question 8:

• A frictional force F_F resists the motion of the box below as it is moved to the right a distance d and then back to it's initial position. What total work does friction do on the block?

(a)
$$W = 2F_F d$$

(b)
$$W = 0$$

(c)
$$W = -2F_F d$$

Conservative forces

- For conservative forces the work done does not depend on path taken, only the starting and finishing points matter
 - Ex. gravity
- For conservative force work on a closed path is zero
 - When I move my book up and then down to the initial position work done by gravity was zero
- This semester
 - Conservative forces
 - Gravity
 - Springs
 - Non-conservative forces
 - Anything else!
- Conservative forces give object a potential energy!!!!

Potential energy

- Potential energy: Stored energy
- Energy depends on the position or configuration of an object.
- Potential energy due to gravity
- Potential energy of a spring.
- $\Delta U = -W_{conservative}$

Work done by gravity

Lets compute the work done by the gravitational force.

By moving the block up a distance h, it gains potential energy of mgh!

$$\bullet \Delta U = -W_C$$

•
$$\Delta U = -(-mg(h_f - h_i)) = mg(\Delta h)$$

$$W_q = -mg\Delta h$$

The Work-Energy Theorem

$$W_{tot} = \Delta K$$

$$W_C + W_{NC} = \Delta K$$

$$W_{NC} = \Delta K - W_{C}$$

$$W_{NC} = \Delta K + \Delta U$$

Mechanical Energy

 The total mechanical energy is defined as the sum of the potential energy and the kinetic energy of an object.

$$E_{mech} = K + U$$
 $W_{NC} = \Delta K + \Delta U$
 $W_{NC} = \Delta E$
 $W_{NC} = E_f - E_i$

Conservation of Mechanical Energy

If only conservative forces are doing work (ie W_{NC} is zero),
 the total mechanical energy of a system is conserved.

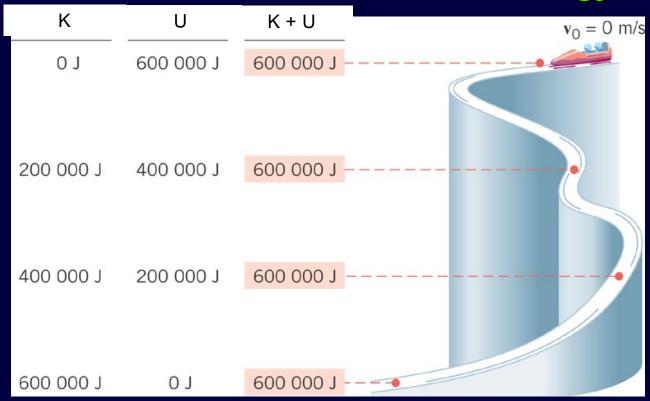
$$W_{NC} = E_f - E_i = 0$$

 $E_{initial} = E_{final}$

$$E = K + U$$
 is constant!!!

Both K and U can change, but E = K + U remains constant.

Conservation of Mechanical Energy

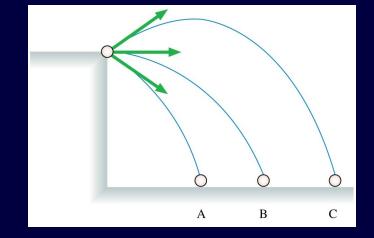

If only conservative forces are doing work (ie W_{NC} is zero), the total mechanical energy of a system is conserved.

$$E_{mech \, \mathrm{f}} = E_{mech \, \mathrm{i}}$$

$$K_{\mathrm{f}} + U_{\mathrm{gf}} = K_{\mathrm{i}} + U_{\mathrm{gi}}$$

$$\frac{1}{2} m v_{\mathrm{f}}^2 + m g y_{\mathrm{f}} = \frac{1}{2} m v_{\mathrm{i}}^2 + m g y_{\mathrm{i}}$$

Mechanical energy is not always conserved!!!!!


But Energy is.

Conservation of Mechanical Energy

Clicker Question 9:

Three balls are thrown from a cliff with the same speed but at different angles. Which ball has the greatest speed just before it hits the ground?

- A. Ball A.
- B. Ball B.
- C. Ball C.
- D. All balls have the same speed.
- E. Balls A and C